
Prof. Peter Pietzuch

(joint work with Carlos Segarra, Simon Shillaker, Guo Li, Eleftheria Mappoura, Rodrigo Bruno, Lluis Vilanova)

Department of Computing and I-X
Imperial College London

http://lsds.doc.ic.ac.uk
prp@imperial.ac.uk

SESAME Workshop – Rotterdam, Netherlands – March 2025

Large-Scale Data & Systems Group

Serverless, Quo Vadis?
Towards Granular Management

in Serverless Clouds

What is Serverless?

Peter Pietzuch - Imperial College London 2

10101011

000010001
00100010

The Vision of Serverless Clouds

3

Promise of efficient and simple online/compute-intensive/machine learning

applications in the cloud

10101011

000010001
00100010

+

dataapplication

serverless

cloud

Provider achieves performance,

scalability and efficiency

Computation expressed

as functions

Efficient data/

state access

Peter Pietzuch - Imperial College London

Why is Serverless Great?

Peter Pietzuch - Imperial College London 4

Serverless

cloud provider

Cloud user

Only need to focus

on business logic

High performance +

elastic scaling

Flexible resource

management

High efficiency +

utilisation

10101011

000010001
00100010

The Reality of Serverless Clouds

5

10101011

000010001
00100010

+

Applications packaged

as containers

Data/state

must live in

remote stores

Provider handles

container orchestration

Promise of efficient and simple online/compute-intensive/machine learning

applications in the cloud

Peter Pietzuch - Imperial College London

We Don’t Deliver The Promised Benefits

Peter Pietzuch - Imperial College London 6

Serverless

cloud provider

Cloud user

Only need to focus

on business logic

High performance +

elastic scaling

Flexible resource

management

High efficiency +

utilisation

Complexity

of container

deployment

Overhead +

cold-start

effects

Many

scheduling

constraints

Limited

density +

container

execution

overheads

Serverless – What Went Wrong?

• We need a new execution abstraction!
7

Virtual

machine

Container
?

Infrastructure-

as-a-Service
Microservices Serverless

Stateless

Container

Functions

Execution

abstraction

Peter Pietzuch - Imperial College London

Picking an Execution Abstraction for Serverless

• Don’t reinvent the wheel

• Consider how existing compute-intensive applications are written
– Machine learning

– Weather forecasting

– Genetic modelling

– Molecule dynamics simulation

Peter Pietzuch - Imperial College London 8

Multi-Threaded + Multi-Process Applications

Peter Pietzuch - Imperial College London 9

multi-threaded

applications with

shared memory

multi-process

applications with

message passing

between nodes

Why are such Applications a Good Fit for Serverless?

• Multi-threaded/process applications support scaling in the cloud

10

VM A VM B

scale up multi-

threaded apps:

allocate more

threads to vCPUs

scale out multi-

process apps:

allocate more VMs

Peter Pietzuch - Imperial College London

How to Allocate Such Applications?

• Cloud provider wants high utilisation of vCPUs

11

App 1

VM A

App 2

VM B
App 4

VM C

App 3

Cloud provider

App 1

App 2

App 5

• High utilisation leads to fragmentation, thus worse performance
Peter Pietzuch - Imperial College London

Fragmentation

But Cloud Users Want Good Performance

• Cloud provider can delay allocation to avoid fragmentation

12

App 1

VM A

App 2

VM B
App 4

VM C

App 3

App 4

N
o

fra
g
m

e
n
ta

tio
n

Cloud provider

• Idea: Can we dynamically change the allocation of multi-threaded/process apps?
Peter Pietzuch - Imperial College London

Low utilisation

How To Support Dynamic Allocation in Cloud?

• Requires elastic scaling
of multi-threaded
applications

13

VM A VM B

Challenge:

Adding threads

without violating

consistency

Challenge:

Migrating processes

efficiently and

correctly

• Requires dynamic
migration of multi-
process applications

Peter Pietzuch - Imperial College London

Granny: Runtime for Multi-Threaded/Process Serverless Apps

• Granny enables cloud providers to dynamically manage multi threaded/process
applications

14

multi-threaded app 1

VM A

multi-process app 2

VM B
multi-process app 3

VM C

v
e
rt

ic
a
l

s
c

a
li
n

g

horizontal migration

Granny supports:
– adding vCPUs to multi-

threaded apps

– migrating vCPUs of multi-

process apps

Granny executes

unmodified multi-threaded

(OpenMP) and multi-

process (MPI) apps

Peter Pietzuch - Imperial College London

Granule Execution Abstraction

• A Granule can execute with thread or process semantics

15

multi-process app 2

VM B

multi-threaded app 1

VM A

• Each Granule
occupies 1 vCPU

• Multi-threaded
apps use multiple
Granules

• Multi-process apps
have Granules
spanning multiple
VMs

Peter Pietzuch - Imperial College London

Granule Execution Abstraction

16

multi-process app 2

VM B

horizontal migration

(1) Process/thread

semantics:

How to express both

thread and process

state?

(2) Consistency:

How to ensure

memory consistency?

(3) Migration:

How to do

efficient and

correct Granule

migration?

multi-threaded app 1

VM A

v
e
rt

ic
a

l
s
c
a
lin

g

Peter Pietzuch - Imperial College London

Memory Layout Based on WebAssembly (WASM)

• Proposed for browsers but increasingly used in edge/data centres
– e.g., Fastly, Cloudflare, Krustlet, …

• Memory-safe intermediate language
– Prevents instructions from accessing

unauthorised memory using
software fault isolation (SFI)

Peter Pietzuch - Imperial College London 17

WebAssembly

• Simple linear memory layout for each WASM module:

DataStack Heap

std::vector<uint8_t> wasmMemory;

Offset: +0 +stack_base +heap_base +heap_top +heap_top

< 4GB

Memory layout makes Granules efficient to snapshot

Granules with Process and Thread Semantics

• Granules in same VM share single virtual address space

18

VMvirtual address space

Granule
(process semantics)

stack

heap

code & data

char* b = …
MPI_Bcast(*b)

Granule
(process semantics)

stack
heap

code & data

char* b = …
MPI_Bcast(*b)

Granule
(thread semantics)

stack

heap

code & data

…

<body>

Granule
(thread semantics)

stack
heap

code & data

int i = 0;
#pragma for
for (;;i++)
 <body>

TCP

Process semantics:

Separate page mapping

Send messages

Runtime manages delivery

Thread semantics:
Shared page mapping

Operate on shared memory

Runtime manages

synchronisation

Peter Pietzuch - Imperial College London

Granny Runtime Implementation

• Each Granule executes as OS thread
– Application code isolated as WASM module

19

Granule

Granny Runtime

Linux

Thread + CGroup + Net NS

Application code

(WASM)

MPI backend
MPI_*

Posix backend
fd_*, mmap, ...

OMP backend
kmpc_*, omp_*

Granny core

Message mailboxes FD tables SHM mappings

wasm_fd fd

4 52

net fs threads cgroupsns

Control points

System call

• How to ensure consistent Granule state?

• Granules interact with Granny Runtime at
control points:
– Backends implement specific APIs

(OpenMP, MPI, POSIX)

– Granny makes system calls as necessary

• Granny Runtime enforces consistent
management actions
– No inconsistent thread state

– No in-flight messages that require migration

Peter Pietzuch - Imperial College London

Granules: Capturing State

• MPI backend sends/receives messages

20

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
 MPI_Send(1, sBuf);
} else {
 MPI_Recv(0, rBuf);
 fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

send(1, MSG)

1:B

App state

(WASM)

Granny

Runtime state

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
 MPI_Send(1, sBuf);
} else {
 MPI_Recv(0, rBuf);
 fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

0:A 1:self

Granule 0 Granule 1

VM A VM B

0:self

recv(0, MSG)

Peter Pietzuch - Imperial College London

Granules: Capturing State

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
 MPI_Send(1, sBuf);
} else {
 MPI_Recv(0, rBuf);
 fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

1:B

App state

(WASM)

Granny

Runtime state

Granule 0 Granule 1

VM A VM B

0:self

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
 MPI_Send(1, sBuf);
} else {
 MPI_Recv(0, rBuf);
 fwrite(fp, rBuf);
}
MPI_Barrier();

POSIX backend

wasm_fd fd

fp 52

• POSIX backend manages files

Peter Pietzuch - Imperial College London 21

Migrating Granules

• Snapshot Granule at
distributed barrier

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
 MPI_Send(1, sBuf);
} else {
 MPI_Recv(0, rBuf);
 fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

1:B

G0 G1

VM A VM B

0:self

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
 MPI_Send(1, sBuf);
} else {
 MPI_Recv(0, rBuf);
 fwrite(fp, rBuf);
}
MPI_Barrier();

recv(1, BARRIER_JOIN) send(0, BARRIER_JOIN)

MPI backend

0:A 1:self

(1) Granules reaches BARRIER_JOIN

(2) Cloud provider decides to migrate

(3) Cloud provider sends migration plan

(4) Snapshot Granule

(5) Stop snapshotted Granule

migrate?

G0: -
G1: B->A

G0: -
G1: B->A

wasm_fd bytes

fp fread(52)

Peter Pietzuch - Imperial College London 22

Migrating Granules

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
 MPI_Send(1, sBuf);
} else {
 MPI_Recv(0, rBuf);
 fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

1:self

G0 G1

VM A VM B

0:self

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
 MPI_Send(1, sBuf);
} else {
 MPI_Recv(0, rBuf);
 fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

0:self 1:self

wasm_fd bytes

fp fread(52)

(6) Restore Granule from snapshot

(7) Granules resume at barrier

POSIX
backend

wasm_fd fd

fp 33

send(1, BARRIER_DONE) recv(0, BARRIER_DONE)

• Resume Granule on new VM A

Peter Pietzuch - Imperial College London 23

What Management Policies Does Granny Enable?

• (1) Compaction Policy
– Trade-off between utilisation

and fragmentation

Peter Pietzuch - Imperial College London

• (2) Elastic Policy
– Dynamically scale-up to

available vCPUs

• (3) Spot VM Policy
– Use spot VMs until

eviction

• Compare Granny policies to:

• Azure Batch scheduler:
– allocates resources at

VM granularity

– low fragmentation but also
low utilisation

• Slurm scheduler:
– Allocates resources at

vCPU granularity

– high utilisation but also
high fragmentation

24

Evaluation Workloads and Metrics

Peter Pietzuch - Imperial College London 25

• Workloads:

Distributed multi-

process (MPI) app:

LAMMPS molecule

dynamic simulator

Multi-threaded

(OpenMP) app:

ParRes P2P Kernel on

large-scale matrix

• Schedule N applications on 32 VMs with 8 vCPUs each

• Run applications to completion

• Metrics:

• Application performance: job completion time (JCT)

• Utilisation: percentage of idle vCPUs

• Fragmentation: number of cross-VM communication links VM A VM B

4 cross-VM links

Compaction Policy with Horizontal Migration

• Schedule 100 instances of LAMMPS (distributed multi-process) eagerly

26

By improving

locality through

migration, Granny

lowers median

and tail JCTsGranny leaves 5% of

vCPUs unallocated

to enable migration

better

Peter Pietzuch - Imperial College London

Compaction Policy: Utilisation and Fragmentation

27

With only 5% of vCPUs idle, Granny reduces fragmentation by 25%

• Utilisation • Fragmentation

b
e

tte
r

b
e

tte
r

Peter Pietzuch - Imperial College London

Elastic Policy for Multi-Threaded Apps

• Schedule 100 instances of ParRes P2P (multi-threaded) eagerly

28

Granny uses idle

vCPUs elastically

to lower median

and tail JCTs

Peter Pietzuch - Imperial College London better

Elastic Policy: Utilisation

29

Bin-packing leaves >40% of vCPUs idle, and Granny exploits this with elastic scaling

• Utilisation

b
e
tte

r

Peter Pietzuch - Imperial College London

Spot VM Policy with Eviction Migration

30

Granny’s proactive migration loses less work under spot evictions

• Deploy LAMMPS (distributed multi-process) with spot VMs
– Spot VMs have 1 min eviction grace period

Granules

migrate away

from evicted VMs

b
e

tte
r

Peter Pietzuch - Imperial College London

Towards Granular Management in Serverless Clouds

• Serverless is an exciting cloud computing with lots of potential
– There are opportunities in rethinking execution abstractions for serverless

– POSIX is a blessing and a curse

• Example: Granules to enable flexible management policies
– Granules combines multi-threaded and multi-process execution

– Granules enables low overhead elastic scaling + dynamic migration

• What are other serverless execution models?

github.com/faasm/faasm

Thank You! Peter Pietzuch <prp@imperial.ac.uk>

github.com/faasm/granny-experiments

Granny

NSDI’25

paper:

Peter Pietzuch - Imperial College London 31

	Slide 1: Serverless, Quo Vadis? Towards Granular Management in Serverless Clouds
	Slide 2: What is Serverless?
	Slide 3: The Vision of Serverless Clouds
	Slide 4: Why is Serverless Great?
	Slide 5: The Reality of Serverless Clouds
	Slide 6: We Don’t Deliver The Promised Benefits
	Slide 7: Serverless – What Went Wrong?
	Slide 8: Picking an Execution Abstraction for Serverless
	Slide 9: Multi-Threaded + Multi-Process Applications
	Slide 10: Why are such Applications a Good Fit for Serverless?
	Slide 11: How to Allocate Such Applications?
	Slide 12: But Cloud Users Want Good Performance
	Slide 13: How To Support Dynamic Allocation in Cloud?
	Slide 14: Granny: Runtime for Multi-Threaded/Process Serverless Apps
	Slide 15: Granule Execution Abstraction
	Slide 16: Granule Execution Abstraction
	Slide 17: Memory Layout Based on WebAssembly (WASM)
	Slide 18: Granules with Process and Thread Semantics
	Slide 19: Granny Runtime Implementation
	Slide 20: Granules: Capturing State
	Slide 21: Granules: Capturing State
	Slide 22: Migrating Granules
	Slide 23: Migrating Granules
	Slide 24: What Management Policies Does Granny Enable?
	Slide 25: Evaluation Workloads and Metrics
	Slide 26: Compaction Policy with Horizontal Migration
	Slide 27: Compaction Policy: Utilisation and Fragmentation
	Slide 28: Elastic Policy for Multi-Threaded Apps
	Slide 29: Elastic Policy: Utilisation
	Slide 30: Spot VM Policy with Eviction Migration
	Slide 31: Towards Granular Management in Serverless Clouds

