Imperial College - (& LSDS
London :.:: ‘&

Serverless, Quo Vadis?
Towards Granular Management
In Serverless Clouds

Prof. Peter Pietzuch

(joint work with Carlos Segarra, Simon Shillaker, Guo Li, Eleftheria Mappoura, Rodrigo Bruno, Lluis Vilanova)

Department of Computing and I-X
Imperial College London

http://Isds.doc.ic.ac.uk
prp@imperial.ac.uk

SESAME Workshop — Rotterdam, Netherlands — March 2025

What Is Serverless?

SESAME @ ASPLOS&EuroSys'25 Schedule Dates Call for papers m
The 3rd Workshop on

CEhErwvarlace Quwetame

Call for Papers

Serverless has emerged as the next dominant cloud architecture and paradigm due to its elastic
scalability and flexible billing model. [In serverless, developers focus on writing their application’s
business logic, e.qg., as a set of functions and GenAI models connected in a workflow, whereas providers
take responsibility for dynamically managing cloud resources, f.g., by scaling the number of instances for
each deployed function. This division of responsibilities opens new opportunities for systems researchers

- |L____J _ " -
| | o
This year's addition: Serverless and efficient GenAl inference
serving
The workshop 15 co-located with ASPLOS'25 and EuroSys'25 and will be
onducted in person (NO remote participants) on March 31st, bringing
The (":l.lfll"l"". Trom academia and ""i..'.""-,-' [+ ‘f!f Tare resagarchn In
serverless systems in Postillion Hotel & Convention Centre WTC
Rotterdam in Mees [room

Peter Pietzuch - Imperial College London 2

The Vision of Serverless Clouds

Promise of efficient and simple online/compute-intensive/machine learning

applications in the cloud

Efficient data/
state access
VAVAV/
NNV 000010001
N\ 00100010
application data

&

Computation expressed
as functions

Peter Pietzuch - Imperial College London

D

serverless
cloud

10101011

VIV AAY O0000100100001001 Vv
VAVAVAWAVAV/ /\/\/\

\

Provider achieves performance,
scalability and efficiency

Why is Serverless Great?

(g) Cloud user g Serverless
() Jud cloud provider

Only need to focus V Flexible resource V
on business logic management

High performance + V High efficiency + V

elastic scaling utilisation

Peter Pietzuch - Imperial College London

The Reality of Serverless Clouds

Promise of efficient and simple online/compute-intensive/machine learning
applications in the cloud

Data/state
must live in
remote stores
10101011
SRR B AN s NN
V.V, 00100010 \
I 74 /\/\/

&

Applications packaged Provider handles
as containers container orchestration

Peter Pietzuch - Imperial College London

We Don’t Deliver The Promised Benefits

&

Serverless
cloud provider

(g) Cloud user
{«>)

Only need to focus x Complexity Flexible resource g/lc?]?:julin
on business logic of container management x ng
deployment constraints
Limited
: density +
High performance +
elgstig scaling x Overhead + High efficiency + x container
cold-start utilisation execution

effects overheads

Peter Pietzuch - Imperial College London

Serverless — What Went Wrong?

Infrastructure- Microservices Serverless
as-a-Service

Execution
abstraction

s N = U

Virtual Container Stateless
machine Container

We need a new execution abstraction!

Peter Pietzuch - Imperial College London

Functions R

Picking an Execution Abstraction for Serverless

Don’t reinvent the wheel

Consider how existing compute-intensive applications are written
— Machine learning

— Weather forecasting Q 3%:%““ Z %# [f@ § %

— Genetic modelling
— Molecule dynamics simulation

Peter Pietzuch - Imperial College London

Multi-Threaded + Multi-Process Applications

7N
W OpenMP /N | P
/\/\/ ﬁ:ﬁ NumPy /\/\/ - |/ OPEN MPI
— VY, IV, O PyTorch
multi-threaded multi-process
applications with applications with
shared memory message passing

between nodes

Peter Pietzuch - Imperial College London

Why are such Applications a Good Fit for Serverless?

Multi-threaded/process applications support scaling in the cloud

scale up multi- Py R p scale out multi-
threaded apps: E E o E E process apps:

m)) ||] =]
allocate more VM A VM B allocate more VMs
threads to vCPUs

Peter Pietzuch - Imperial College London

How to Allocate Such Applications?

Cloud provider wants high utilisation of vCPUs

Fragmentation

&

Cloud provider

" S

N S
App X

App 2 App 1l App 2 App 4
VM A VM B VM C

High utilisation leads to fragmentation, thus worse performance

Peter Pietzuch - Imperial College London 11

But Cloud Users Want Good Performance

Cloud provider can delay allocation to avoid fragmentation

&

Cloud provider

000
000

OO

App 4

@

Low utilisation

VM A

App 2
VM B

VM C

uonejuswbels

ldea: Can we dynamically change the allocation of multi-threaded/process apps?

Peter Pietzuch - Imperial College London

ON

How To Support Dynamic Allocation in Cloud?

Requires elastic scaling Requires dynamic

of multi-threaded migration of multi-
applications process applications
Challenge: m) m); E| E| Challenge:

Adding threads [SN [Migrating processes
without violating m]): m): m]: :m); efficiently and
consistency VM A VM B correctly

Peter Pietzuch - Imperial College London

Granny: Runtime for Multi-Threaded/Process Serverless Apps

Granny enables cloud providers to dynamically manage multi threaded/process

applications

Granny supports:

— adding vCPUs to multi-
threaded apps

— migrating vCPUs of multi-
process apps

Granny executes
unmodified multi-threaded
(OpenMP) and multi-
process (MPI) apps

Peter Pietzuch - Imperial College London

vertical scaling

horizontal migration

multi-threaded app 1
VM A

multi-process app 2

VM B

multi-process app 3

VM C

14

Granule Execution Abstraction

A Granule can execute with thread or process semantics

Each Granule
occupies 1 vCPU

Multi-threaded
apps use multiple
Granules

Peter Pietzuch - Imperial College London

multi-threaded app 1
VM A

multi-process app 2

VM B

Multi-process apps
have Granules
spanning multiple
VMSs

15

Granule Execution Abstraction

/
(2) Consistency:
How to ensure

-

memory consistency?

\ a

J

vertical scaling

/(1) Process/thread
semantics:
How to express both
thread and process
\state?

N

]

Peter Pietzuch - Imperial College London

horizontal migration

multi-threaded app 1
VM A

multi-process app 2

VM B

/(3) Migration: R
How to do
efficient and
correct Granule
_migration?)

16

Memory Layout Based on WebAssembly (WASM)

Proposed for browsers but increasingly used in edge/data centres
— e.g., Fastly, Cloudflare, Krustlet, ...

g

+, C or Rust

Memory-safe intermediate language
WebAssembly

— Prevents instructions from accessing
unauthorised memory using

software fault isolation (SFI)

:.L:E

A0kn,
L\?‘;‘_}:
[|t e
Y -.'é'?
- + Kilh
e
A= (B

Simple linear memory layout for each WASM module:
Offset: +0 +stack _base +heap base

+heap_top +heap top

\4

Stack Data Heap

. < 4GB

std: :vector<uint8 t> wasmMemory;
Memory layout makes Granules efficient to snapshot
Peter Pietzuch - Imperial College London

17

Granules with Process and Thread Semantics

Granules in same VM share single virtual address space

Process semantics:

Separate page mapping
Send messages
Runtime manages delivery

Thread semantics:
Shared page mapping
Operate on shared memory
Runtime manages
synchronisation

Peter Pietzuch - Imperial College London

TCP
Granule Granule Granule Granule
(process semantics) (process semantics) | (thread semantics) (thread semantics)
code & data code & data code & data code & data
char* b = .. char* b = .. int L= g;
MPI_Bcast (*b) MPI_Bcast(*Db) pragma' ot
<body> for (;.,1i++)
<body>
stack stack || stack | stack
heap héap heap 3 heap
o~ s N -
\\\\\ // \‘\ ""/ \,\ ’-’lz
Y /\ - AN -
[P -
virtual address space VM

18

Granny Runtime Implementation

Each Granule executes as OS thread
— Application code isolated as WASM module

How to ensure consistent Granule state?

Granules interact with Granny Runtime at
control points:

— Backends implement specific APIs
(OpenMP, MPI, POSIX)

— Granny makes system calls as necessary

Granny Runtime enforces consistent
Mmanagement actions

— No inconsistent thread state

— No in-flight messages that require migration

Peter Pietzuch - Imperial College London

-+ Thread + CGroup + Net NS

D Application code !
Granule . — (WASM) ___________ a1
Control | points
| 22N 2. 2V
MPI backend Posix backend : OMP backend
MP|_* fd_*, mmap, .. :i kmpc_* omp_*
.......... RSN NS SO
; Granny core "
: Message mailboxes FD tables SHM mappings
: wasm_fd| fd

I

3

Granny Runtime

. — 5
O e

*

System} call

Linux 1 net ii fs i

threads i ns ||

19

Granules: Capturing State

App state
(WASM)

Granny
Runtime state

Peter Pietzuch - Imperial College London

JV

VM A

int rank;
MPI_Comm_rank(&rank) ;
if (rank == 0) {
MPI_Send(1, sBuf);
} else {
MPI_Recv (0,
fwrite(fp,
}

MPI_Barrier();

rBuf) ;
rBuf)

MPI backend

O:self 1:B

Granule 0 send(1, MSG)

VM B

int rank;
MPI_Comm_rank(&rank) ;

if (rank == 0) {
MPI_Send(1, sBuf);
} else {
MPI_Recv (0, rBuf):
fwrit&(fp, rBuf);

}
MPI Bargier();
MPI backend

0:A 1:self

recv(@, MSG) Granule 1

MPI backend sends/receives messages

Granules: Capturing State

App state
(WASM)

Granny
Runtime state

Peter Pietzuch - Imperial College London

VMA

int rank;
MPI_Comm_rank(&rank) ;
if (rank == 0) {
MPI_Send(1, sBuf);
} else {
MPI_Recv (0, rBuf);

fwrite(fp, rBuf):;
}

MPI_Barrier();

MPI backend

O:self 1:B

Granule 0

VM B

int rank;
MPI_Comm_rank(&rank) ;
if (rank == 0) {
MPI_Send (1, sBuf);
} else {
MPI_Recv (0, rBuf);
fwrite(fp, rBuf);
}
MPI_Barrier();

]

wasm_fd |fd

fp |52

Granule 1

POSIX backend manages files

21

Migrating Granules

Snapshot Granule at
distributed barrier

o il

migrate?

cereees L::""..

(1) Granules reaches BARRIER _JOIN

(2) Cloud provider decides to migrate

(3) Cloud provider sends migration plan

(4) Snapshot Granule

(5) Stop snapshotted Granule

Peter Pietzuch - Imperial College London

Gl: B->A

e

n
— ¥
L]

VMA

int rank;
MPI_Comm_rank(&rank) ;
if (rank == 0) f{
MPI_Send(1, sBuf):;
} else {
MPI_Recv (0, rBuf);
fwrite(fp, rBuf);

}
MPI_Barrier();

MPI backend

O:self 1:B

GO recv(l, BARRIER_JOIN)

A

VM B

GO: -
Gl: B->A

int rank;
MPI_Comm_rank(&rank) ;

if (rank == 0) {
MPI_Send(1, sBuf):;
} else {

MPI_Recv (0, rBuf);
fwrite(fp, rBuf):

}
MPI_Barrier();

MPI backend

0:A 1:self

send(@, BARRIER_JOIN) G1

wasm_fd |bytes

fp |fread(52

22

Migrating Granules

Resume Granule on new VM A

(6) Restore Granule from snapshot

(7) Granules resume at barrier

Peter Pietzuch - Imperial College London

VMA

int rank;
MPI_Comm_rank(&rank) ;
if (rank == 0) f{
MPI_Send(1, sBuf):;
} else {
MPI_Recv (0, rBuf);
fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

O:self 1:self

GO send(1, BARRIER DONE)

int rank;
MPI_Comm_rank(&rank) ;
if (rank == 0) {
MPI_Send(1, sBuf);
} else {
MPI_Recv (0, rBuf);
fwrite(fp, rBuf):
}
MPI_Barrier():

MPI backend ’ el

Q:self 1:self wasm_fd | fd

| | fp |33

recv(0, BARRIER DONE) Gl

wasm_fd |bytes

fp |fread(52

VM B

23

What Management Policies Does Granny Enable?

(1) Compaction Policy (2) Elastic Policy (3) Spot VM Policy
— Trade-off between utilisation — Dynamically scale-up to — Use spot VMs until
and fragmentation available vCPUs eviction

Compare Granny policies to:

A Azure Batch scheduler: Slurm scheduler:
_ allocates resources at SIUI'ITI — Allocates resources at
workload manager VCPU granUIarlty

VM granularity

— low fragmentation but also
low utilisation

— high utilisation but also
high fragmentation

Peter Pietzuch - Imperial College London

24

Evaluation Workloads and Metrics

Distributed multi- ” Multi-threaded
Workloads: process (MPI) app: !H (OpenMP) app:
J LAMMPS molecule ParRes P2P Kernel on
dynamic simulator large-scale matrix

Schedule N applications on 32 VMs with 8 vCPUs each
Run applications to completion

Metrics:
Application performance: job completion time (JCT) 3 ><} E
Utilisation: percentage of idle vCPUs - E
Fragmentation: number of cross-VM communication links VM B

4 cross-VM links

Peter Pietzuch - Imperial College London

Compaction Policy with Horizontal Migration

Schedule 100 instances of LAMMPS (distributed multi-process) eagerly

Granny leaves 5% of
vCPUs unallocated
to enable migration

Peter Pietzuch - Imperial College London

1.0

0.8 1

0.6 -

CDF

0.4 -

0.2 -

0.0

better

<

B batch B granny
B slurm
1000 2000 3000

Job Completion Time [s]

By improving
locality through
migration, Granny
lowers median
and tail JCTs

26

Compaction Policy: Utilisation and Fragmentation

Utilisation Fragmentation
100
%0 B slurm
B batch
- W granny %
- —
60 -
g 2 :
Z B 7 ol
= 40 | S
o
IS \ ++
20

0 1000 2000 3000 0 1000 2000 3000
Time [s] Time [s]

With only 5% of vCPUs idle, Granny reduces fragmentation by 25%

Peter Pietzuch - Imperial College London 27

Elastic Policy for Multi-Threaded Apps

Schedule 100 instances of ParRes P2P (multi-threaded) eagerly

Peter Pietzuch - Imperia

1.0
0.8 A
0.6
E B slurm
@) B batch
0.4 7 W granny
0.2 1
00 B T T T
0 200 400 600 800

Job Completion Time [s]

| College London bettel’

Granny uses idle
vCPUs elastically
to lower median
and tail JCTs

Elastic Policy: Utilisation

Bin-packing leaves >40% of vCPUs idle, and Granny exploits this with elastic scaling

Peter Pietzuch - Imperial College London

% 1dle vCPUs

60

AN
o
1

20 -

0

Utilisation
e .
/
‘l B slurm
I B batch
! W granny
0 200 400 600 300
Time [s]

<

JENEL

29

Spot VM Policy with Eviction Migration

Deploy LAMMPS (distributed multi-process) with spot VMs
— Spot VMs have 1 min eviction grace period

B slurm BN batch W granny
=2
o> 2.0
Ca) >
S © o
2 1.5 1 @
@) »n —
75 2 ®
§\ 1.0 -
]
f=
Granules § ?_, 0.5 -
. O v
migrate away =
from evicted VMs — 0.0 -

8 VMs 16 VMs 24 VMs 32 VMs
(25 Jobs) (50 Jobs) (75 Jobs) (100 Jobs)

Granny’s proactive migration loses less work under spot evictions

Peter Pietzuch - Imperial College London

30

Towards Granular Management in Serverless Clouds

Serverless is an exciting cloud computing with lots of potential

— There are opportunities in rethinking execution abstractions for serverless
— POSIX is a blessing and a curse

Example: Granules to enable flexible management policies
— Granules combines multi-threaded and multi-process execution
— Granules enables low overhead elastic scaling + dynamic migration

What are other serverless execution models?

Granny A ek
En.ﬂﬁm github.com/faasm/faasm NSDI'25 &
github.com/faasm/granny-experiments paper:

Thank You! Peter Pietzuch <prp@imperial.ac.uk>

Peter Pietzuch - Imperial College London 31

	Slide 1: Serverless, Quo Vadis? Towards Granular Management in Serverless Clouds
	Slide 2: What is Serverless?
	Slide 3: The Vision of Serverless Clouds
	Slide 4: Why is Serverless Great?
	Slide 5: The Reality of Serverless Clouds
	Slide 6: We Don’t Deliver The Promised Benefits
	Slide 7: Serverless – What Went Wrong?
	Slide 8: Picking an Execution Abstraction for Serverless
	Slide 9: Multi-Threaded + Multi-Process Applications
	Slide 10: Why are such Applications a Good Fit for Serverless?
	Slide 11: How to Allocate Such Applications?
	Slide 12: But Cloud Users Want Good Performance
	Slide 13: How To Support Dynamic Allocation in Cloud?
	Slide 14: Granny: Runtime for Multi-Threaded/Process Serverless Apps
	Slide 15: Granule Execution Abstraction
	Slide 16: Granule Execution Abstraction
	Slide 17: Memory Layout Based on WebAssembly (WASM)
	Slide 18: Granules with Process and Thread Semantics
	Slide 19: Granny Runtime Implementation
	Slide 20: Granules: Capturing State
	Slide 21: Granules: Capturing State
	Slide 22: Migrating Granules
	Slide 23: Migrating Granules
	Slide 24: What Management Policies Does Granny Enable?
	Slide 25: Evaluation Workloads and Metrics
	Slide 26: Compaction Policy with Horizontal Migration
	Slide 27: Compaction Policy: Utilisation and Fragmentation
	Slide 28: Elastic Policy for Multi-Threaded Apps
	Slide 29: Elastic Policy: Utilisation
	Slide 30: Spot VM Policy with Eviction Migration
	Slide 31: Towards Granular Management in Serverless Clouds

