
Prof. Peter Pietzuch

(joint work with Carlos Segarra, Simon Shillaker, Guo Li, Eleftheria Mappoura, Rodrigo Bruno, Lluis Vilanova)

Department of Computing and I-X
Imperial College London

http://lsds.doc.ic.ac.uk
prp@imperial.ac.uk

SESAME Workshop – Rotterdam, Netherlands – March 2025

Large-Scale Data & Systems Group

Serverless, Quo Vadis? 
Towards Granular Management 

in Serverless Clouds



What is Serverless?
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The Vision of Serverless Clouds
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Promise of efficient and simple online/compute-intensive/machine learning 

applications in the cloud
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dataapplication

serverless 

cloud

Provider achieves performance, 

scalability and efficiency

Computation expressed 

as functions

Efficient data/ 

state access
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Why is Serverless Great?
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Serverless 

cloud provider

Cloud user

Only need to focus 

on business logic

High performance + 

elastic scaling

Flexible resource 

management

High efficiency + 

utilisation
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The Reality of Serverless Clouds
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Applications packaged 

as containers

Data/state 

must live in 

remote stores

Provider handles 

container orchestration

Promise of efficient and simple online/compute-intensive/machine learning 

applications in the cloud
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We Don’t Deliver The Promised Benefits
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Serverless 

cloud provider

Cloud user

Only need to focus 

on business logic

High performance + 

elastic scaling

Flexible resource 

management

High efficiency + 

utilisation

Complexity 

of container 

deployment

Overhead + 

cold-start 

effects

Many 

scheduling 

constraints

Limited 

density + 

container 

execution 

overheads



Serverless – What Went Wrong?

• We need a new execution abstraction!
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Virtual 

machine

Container
?

Infrastructure-

as-a-Service
Microservices Serverless

Stateless

Container

Functions

Execution

abstraction
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Picking an Execution Abstraction for Serverless

• Don’t reinvent the wheel

• Consider how existing compute-intensive applications are written
– Machine learning

– Weather forecasting

– Genetic modelling

– Molecule dynamics simulation
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Multi-Threaded + Multi-Process Applications
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multi-threaded 

applications with 

shared memory

multi-process

applications with 

message passing 

between nodes



Why are such Applications a Good Fit for Serverless?

• Multi-threaded/process applications support scaling in the cloud
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VM A VM B

scale up multi-

threaded apps:

allocate more 

threads to vCPUs

scale out multi-

process apps:

allocate more VMs
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How to Allocate Such Applications?

• Cloud provider wants high utilisation of vCPUs
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App 1

VM A

App 2

VM B
App 4

VM C

App 3

Cloud provider

App 1

App 2

App 5

• High utilisation leads to fragmentation, thus worse performance
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But Cloud Users Want Good Performance

• Cloud provider can delay allocation to avoid fragmentation
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App 1

VM A

App 2

VM B
App 4

VM C

App 3

App 4
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Cloud provider

• Idea: Can we dynamically change the allocation of multi-threaded/process apps?
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How To Support Dynamic Allocation in Cloud?

• Requires elastic scaling 
of multi-threaded 
applications
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VM A VM B

Challenge:

Adding threads 

without violating 

consistency

Challenge:

Migrating processes 

efficiently and 

correctly

• Requires dynamic 
migration of multi-
process applications
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Granny: Runtime for Multi-Threaded/Process Serverless Apps

• Granny enables cloud providers to dynamically manage multi threaded/process 
applications
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multi-threaded app 1

VM A

multi-process app 2

VM B
multi-process app 3

VM C
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horizontal migration

Granny supports:
– adding vCPUs to multi-

threaded apps

– migrating vCPUs of multi-

process apps

Granny executes 

unmodified multi-threaded 

(OpenMP) and multi-

process (MPI) apps
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Granule Execution Abstraction

• A Granule can execute with thread or process semantics
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multi-process app 2

VM B

multi-threaded app 1

VM A

• Each Granule 
occupies 1 vCPU

• Multi-threaded 
apps use multiple 
Granules

• Multi-process apps 
have Granules 
spanning multiple 
VMs
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Granule Execution Abstraction
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multi-process app 2

VM B

horizontal migration

(1) Process/thread 

semantics:

How to express both 

thread and process 

state?

(2) Consistency:

How to ensure 

memory consistency?

(3) Migration:

How to do 

efficient and 

correct Granule 

migration?

multi-threaded app 1

VM A

v
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s
c
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g
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Memory Layout Based on WebAssembly (WASM)

• Proposed for browsers but increasingly used in edge/data centres
– e.g., Fastly, Cloudflare, Krustlet, …

• Memory-safe intermediate language
– Prevents instructions from accessing 

unauthorised memory using 
software fault isolation (SFI)
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WebAssembly

• Simple linear memory layout for each WASM module:

DataStack Heap

std::vector<uint8_t> wasmMemory;

Offset:   +0 +stack_base +heap_base +heap_top +heap_top

< 4GB

Memory layout makes Granules efficient to snapshot



Granules with Process and Thread Semantics

• Granules in same VM share single virtual address space
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VMvirtual address space

Granule 
(process semantics)

stack

heap

code & data

char* b = …
MPI_Bcast(*b)

Granule 
(process semantics)

stack
heap

code & data

char* b = …
MPI_Bcast(*b)

Granule 
(thread semantics)

stack

heap

code & data

…
    
<body>

Granule 
(thread semantics)

stack
heap

code & data

int i = 0;
#pragma for
for (;;i++)
    <body>

TCP

Process semantics:

Separate page mapping

Send messages

Runtime manages delivery

Thread semantics:
Shared page mapping

Operate on shared memory

Runtime manages 

synchronisation
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Granny Runtime Implementation

• Each Granule executes as OS thread
– Application code isolated as WASM module
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Granule

Granny Runtime

Linux

Thread + CGroup + Net NS

Application code

(WASM)

MPI backend
MPI_*

Posix backend
fd_*, mmap, ...

OMP backend
kmpc_*, omp_*

Granny core

Message mailboxes FD tables SHM mappings

wasm_fd fd

4 52

net fs threads cgroupsns

Control   points

System    call

• How to ensure consistent Granule state?

• Granules interact with Granny Runtime at 
control points:
– Backends implement specific APIs 

(OpenMP, MPI, POSIX)

– Granny makes system calls as necessary

• Granny Runtime enforces consistent 
management actions
– No inconsistent thread state

– No in-flight messages that require migration
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Granules: Capturing State

• MPI backend sends/receives messages
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int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
  MPI_Send(1, sBuf);
} else {
  MPI_Recv(0, rBuf);
  fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

send(1, MSG)

1:B

App state

(WASM)

Granny

Runtime state

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
  MPI_Send(1, sBuf);
} else {
  MPI_Recv(0, rBuf);
  fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

0:A 1:self

Granule 0 Granule 1

VM A VM B

0:self

recv(0, MSG)
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Granules: Capturing State

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
  MPI_Send(1, sBuf);
} else {
  MPI_Recv(0, rBuf);
  fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

1:B

App state

(WASM)

Granny 

Runtime state

Granule 0 Granule 1

VM A VM B

0:self

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
  MPI_Send(1, sBuf);
} else {
  MPI_Recv(0, rBuf);
  fwrite(fp, rBuf);
}
MPI_Barrier();

POSIX backend

wasm_fd fd

fp 52

• POSIX backend manages files
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Migrating Granules

• Snapshot Granule at
distributed barrier

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
  MPI_Send(1, sBuf);
} else {
  MPI_Recv(0, rBuf);
  fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

1:B

G0 G1

VM A VM B

0:self

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
  MPI_Send(1, sBuf);
} else {
  MPI_Recv(0, rBuf);
  fwrite(fp, rBuf);
}
MPI_Barrier();

recv(1, BARRIER_JOIN) send(0, BARRIER_JOIN)

MPI backend

0:A 1:self

(1) Granules reaches BARRIER_JOIN

(2) Cloud provider decides to migrate

(3) Cloud provider sends migration plan

(4) Snapshot Granule

(5) Stop snapshotted Granule

migrate?

G0: -
G1: B->A

G0: -
G1: B->A

wasm_fd bytes

fp fread(52)
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Migrating Granules

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
  MPI_Send(1, sBuf);
} else {
  MPI_Recv(0, rBuf);
  fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

1:self

G0 G1

VM A VM B

0:self

int rank;
MPI_Comm_rank(&rank);
if (rank == 0) {
  MPI_Send(1, sBuf);
} else {
  MPI_Recv(0, rBuf);
  fwrite(fp, rBuf);
}
MPI_Barrier();

MPI backend

0:self 1:self

wasm_fd bytes

fp fread(52)

(6) Restore Granule from snapshot

(7) Granules resume at barrier

POSIX 
backend

wasm_fd fd

fp 33

send(1, BARRIER_DONE) recv(0, BARRIER_DONE)

• Resume Granule on new VM A
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What Management Policies Does Granny Enable?

• (1) Compaction Policy
– Trade-off between utilisation 

and fragmentation

Peter Pietzuch - Imperial College London

• (2) Elastic Policy
– Dynamically scale-up to 

available vCPUs

• (3) Spot VM Policy
– Use spot VMs until 

eviction 

• Compare Granny policies to:

• Azure Batch scheduler:
– allocates resources at 

VM granularity

– low fragmentation but also 
low utilisation

• Slurm scheduler:
– Allocates resources at 

vCPU granularity

– high utilisation but also 
high fragmentation

24



Evaluation Workloads and Metrics
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• Workloads:

Distributed multi-

process (MPI) app:

LAMMPS molecule 

dynamic simulator

Multi-threaded 

(OpenMP) app:

ParRes P2P Kernel on 

large-scale matrix

• Schedule N applications on 32 VMs with 8 vCPUs each

• Run applications to completion

• Metrics:

• Application performance: job completion time (JCT)

• Utilisation: percentage of idle vCPUs

• Fragmentation: number of cross-VM communication links VM A VM B

4 cross-VM links



Compaction Policy with Horizontal Migration

• Schedule 100 instances of LAMMPS (distributed multi-process) eagerly

26

By improving 

locality through 

migration, Granny 

lowers median 

and tail JCTsGranny leaves 5% of 

vCPUs unallocated 

to enable migration

better
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Compaction Policy: Utilisation and Fragmentation
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With only 5% of vCPUs idle, Granny reduces fragmentation by 25%

• Utilisation • Fragmentation

b
e
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r

b
e
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r
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Elastic Policy for Multi-Threaded Apps

• Schedule 100 instances of ParRes P2P (multi-threaded) eagerly  

28

Granny uses idle 

vCPUs elastically 

to lower median 

and tail JCTs
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Elastic Policy: Utilisation
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Bin-packing leaves >40% of vCPUs idle, and Granny exploits this with elastic scaling

• Utilisation

b
e
tte

r
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Spot VM Policy with Eviction Migration

30

Granny’s proactive migration loses less work under spot evictions

• Deploy LAMMPS (distributed multi-process) with spot VMs
– Spot VMs have 1 min eviction grace period

Granules 

migrate away 

from evicted VMs

b
e

tte
r

Peter Pietzuch - Imperial College London



Towards Granular Management in Serverless Clouds

• Serverless is an exciting cloud computing with lots of potential
– There are opportunities in rethinking execution abstractions for serverless

– POSIX is a blessing and a curse

• Example: Granules to enable flexible management policies
– Granules combines multi-threaded and multi-process execution

– Granules enables low overhead elastic scaling + dynamic migration

• What are other serverless execution models?

github.com/faasm/faasm 

Thank You! Peter Pietzuch <prp@imperial.ac.uk>

github.com/faasm/granny-experiments

Granny

NSDI’25 

paper:
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